Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

[N-(Carboxylatomethyl)aspartato(3-)](ethylenediamine)cobalt(III) trihydrate

Jana Maderová, ${ }^{\text {a }}$ Jaromír Marek ${ }^{\text {b* }}$ and František Pavelčík ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina CH-2, SK-842 15 Bratislava, Slovak Republic, and
${ }^{\mathbf{b}}$ Laboratory of Functional Genomics and Proteomics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
Correspondence e-mail: marek@chemi.muni.cz

Received 17 February 2003
Accepted 20 March 2003
Online 10 April 2003

The mononuclear title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$-$3 \mathrm{H}_{2} \mathrm{O}$, contains an octahedrally coordinated $\mathrm{Co}^{\mathrm{III}}$ atom. The N -(carboxymethyl)aspartate moiety is coordinated as a tetradentate ligand, providing an OONO-donor set and forming two trans five-membered chelate rings and one sixmembered chelate ring. A seven-membered chelate ring is also formed, which consists of part of the six-membered chelate ring and part of one of the five-membered chelate rings. The crystal structure of the complex is stabilized by hydrogen bonds with three water molecules.

Comment

The heteroligand complexes of cobalt(III) with polyaminocarboxylic acids have been studied extensively. These complexes are of interest not only for their stereochemistry (McLachlan et al., 1995) but also for their applications in the bioinorganic field, as they provide simple structural models of

(a)

(b)
metalloprotein active sites (Igi et al., 1981). Tetradentate branched ligands of the aminopolycarboxylate type are used because they form stable complexes in solution (Bernauer, 1976). Recently, we have prepared a novel O, O, N, O-tetradentate ligand, namely N-(carboxymethyl)aspartic acid $\left(\mathrm{H}_{3} \mathrm{cma}, \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{6}\right.$; Maderova et al., 2002). The formation of a complex between $\mathrm{Co}^{\mathrm{III}}, \mathrm{cma}^{3-}$ and glycine has been studied previously (Colomb \& Bernauer, 1977), but the structure of the complex was not resolved. Depending on the relative
positions of the carboxyl groups forming the five-membered chelate rings, the tetradentate ligand can adopt two different geometries in the coordination octahedron of the Co atom, viz. (a) and (b) in Scheme above.
The crystal structure of the title compound, (I), contains discrete molecules, which have a slightly distorted octahedral coordination geometry around the Co atom, with cma^{3-} bonded as a tetradentate trans- O, O, N, O-ligand (see Scheme below and Fig. 1). The coordination about the Co atom can be considered to be meridional, with the three carboxyl O atoms ($\mathrm{O} 2, \mathrm{O} 4$ and O 6) in one plane and the three N atoms ($\mathrm{N} 5, \mathrm{~N} 11$ and N14) in another plane. The aspartic acid portion of the cma^{3-} ligand is coordinated to the Co atom through the α-amine N5, α-carboxyl O2 and β-carboxyl O4 atoms. This coordination mode is similar to that found for various bis($\mathrm{L}-$ aspartato)cobalt(III) complexes previously reported in the literature (Oonishi et al., 1973, 1975). The H atom attached to atom N5 is on the same (syn) side of the O2/N5/N14 plane as the coordinated β-carboxyl O 4 atom. The glycinate group ($\mathrm{N} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 6$) is attached to the Co atom through the carboxyl O6 atom and occupies a position trans to the β-carboxyl O4 atom. The bidentate ethylenediamine ligand occupies the two remaining coordination sites about the Co atom.

(I)

Atom N11 is coordinated to the Co atom in a position trans to the α-amine N5 atom of cma^{3-}, and atom N14 is attached trans to the α-carboxyl O 2 atom of the cma^{3-} ligand.

The bond distances observed within the cma^{3-} and ethylenediamine ligands are comparable to average values found in the structures of other complexes containing aspartic acid

Figure 1
ORTEPIII (Johnson \& Burnett, 1996) plot of (I). Displacement ellipsoids are drawn at the 50% probability level.
(Oonishi et al., 1973, 1975). The bond lengths and angles within the ethylenediamine ligand are normal (Templeton et al., 1979). The $\mathrm{Co}-\mathrm{N}$ and $\mathrm{Co}-\mathrm{O}$ bond distances are similar to the corresponding distances in other cobalt(II) complexes containing polyamine, amino acid or aminopolycarboxylate ligands (Herak et al., 1974; Halloran et al., 1975; Thorup, 1975, 1977; Voss et al., 1978).

The $\mathrm{O} 2-\mathrm{Co}-\mathrm{N} 14$ angle is closed slightly, to $178.61(8)^{\circ}$, and the $\mathrm{C} 1-\mathrm{N} 5-\mathrm{C} 6$ angle is opened to $114.16(17)^{\circ}$, which is evidence of some strain in the arrangement of the chelate rings. The $\mathrm{O} 6-\mathrm{C} 7-\mathrm{C} 6$ angle of $116.8(2)^{\circ}$ is larger than the ideal tetrahedral value of 109°, a feature also found in complexes (Hammershoi et al., 1984) and free aspartates (Oonishi et al., 1973; Sekizaki, 1978). The average CoO (carboxyl) bond length is $1.896 \AA$ and the average $\mathrm{Co}-\mathrm{N}$ bond length is $1.937 \AA$.

The maximum deviation of bond angles around the Co atom from an ideal octahedral geometry is 7.07°. The greatest deviation from 90° occurs for the angles in the two fivemembered chelate rings ($\mathrm{N} 5-\mathrm{Co}-\mathrm{O} 2$, $\mathrm{N} 5-\mathrm{Co}-\mathrm{O} 6$, and $\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 11$; N14-Co-N5, O4-Co-N5 and O2-CoN11; see Table 1). The smallest angular deviation from ideal geometry is for the $\mathrm{O} 6-\mathrm{Co}-\mathrm{O} 2$ angle.

The ethylenediamine ligand does not appear to interact sterically with any part of the cma^{3-} ligand. There are virtually no differences in bond lengths and angles within the $\mathrm{Co}-$ $\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 5$ and $\mathrm{Co}-\mathrm{O} 6-\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 5$ chelate rings.

In the crystal structure, the $\mathrm{Co}^{\mathrm{III}}$ complex and three water molecules are stabilized by an infinite three-dimensional framework of strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

rac- N -(Carboxymethyl)aspartic acid, $\mathrm{H}_{3} \mathrm{cma}$, was prepared according to the method of Maderova et al. (2002), and the title complex, (I), was prepared according to the method of Shibata (1983). All chemicals were of analytical grade. A mixture of $\mathrm{H}_{3} \mathrm{cma}(5 \mathrm{mmol})$ in water (5 ml) and freshly prepared $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was placed in water $(50 \mathrm{ml})$ and heated with stirring at 323 K for 20 min . The colour of the solution changed from green to wine-red. After addition of ethylenediamine (5 mmol), the mixture was heated to 333 K and stirred for 3 h . After cooling to room temperature, the reaction mixture was filtered. Crystals of (I) were grown by slow evaporation of an aqueous solution at room temperature. After 3 d , red crystals were obtained. Compound purity was tested by examination of FTIR and ${ }^{1} \mathrm{H}$ NMR spectra and by elemental analysis (Elemental Analyzer Carlo Erba 1106). Analysis calculated for (I): C 26.6, H 5.5, N 11.6%; found: C 26.3, H $5.3, \mathrm{~N} 11.5 \%$.

Crystal data

```
\(\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\)
\(M_{r}=361.20\)
Monoclinic, \(C c\)
\(a=11.6265(13) \AA\)
\(b=14.5467\) (9) \(\AA\)
\(c=10.0565(11) \AA\)
\(\beta=122.475(15)^{\circ}\)
\(V=1434.9(3) \AA^{3}\)
\(Z=4\)
```

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Co-O4	1.8849 (17)	Co-N14	1.9300 (19)
Co-O6	1.8860 (17)	Co-N11	1.939 (2)
$\mathrm{Co}-\mathrm{O} 2$	1.9172 (16)	Co-N5	1.9407 (19)
O4-Co-O6	177.43 (7)	O6-Co-N5	87.86 (8)
$\mathrm{O} 4-\mathrm{Co}-\mathrm{O} 2$	91.15 (7)	$\mathrm{O} 2-\mathrm{Co}-\mathrm{N} 5$	84.31 (7)
$\mathrm{O} 6-\mathrm{Co}-\mathrm{O} 2$	90.11 (7)	N14-Co-N5	97.07 (8)
$\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 14$	88.82 (8)	N11-Co-N5	176.33 (8)
O6-Co-N14	89.87 (8)	C2-O2-Co	112.99 (13)
$\mathrm{O} 2-\mathrm{Co}-\mathrm{N} 14$	178.61 (8)	C4-O4-Co	128.07 (16)
$\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 11$	86.94 (8)	C7-O6-Co	115.12 (16)
$\mathrm{O} 6-\mathrm{Co}-\mathrm{N} 11$	90.78 (8)	C6-N5-Co	108.60 (13)
$\mathrm{O} 2-\mathrm{Co}-\mathrm{N} 11$	92.28 (8)	C1-N5-Co	103.33 (13)
N14-Co-N11	86.33 (8)	C12-N11-Co	109.26 (15)
$\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 5$	94.50 (8)	C13-N14-Co	109.14 (13)

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N5-H5 \cdots O $5^{\text {i }}$	0.93	1.92	2.832 (3)	168
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 11^{\text {ii }}$	0.92	2.12	2.937 (3)	148
$\mathrm{N} 11-\mathrm{H} 11 B \cdots \mathrm{O} 3^{\text {iii }}$	0.92	2.29	3.086 (3)	144
$\mathrm{N} 14-\mathrm{H} 14 A \cdots \mathrm{O} 12$	0.92	1.90	2.812 (3)	171
$\mathrm{N} 14-\mathrm{H} 14 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.92	2.31	3.057 (2)	139
N14-H14B $\cdots \mathrm{O}^{\text {i }}$	0.92	2.45	3.243 (3)	145
O11-H11W...O5	0.89 (7)	1.90 (2)	2.747 (3)	157 (4)
O11-H11V... $\mathrm{O}^{\text {iv }}$	0.88 (2)	1.88 (2)	2.752 (3)	171 (4)
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{~W} \cdots \mathrm{O} 13$	0.88 (5)	1.85 (5)	2.719 (3)	168 (4)
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{~V} \cdots \mathrm{O} 3^{\text {iv }}$	0.87 (2)	1.92 (2)	2.783 (3)	172 (4)
$\mathrm{O} 13-\mathrm{H} 13 \mathrm{~V} \ldots \mathrm{O}^{v}$	0.90 (2)	2.09 (3)	2.941 (3)	156 (4)
O13-H13W \cdots O11 ${ }^{\text {i }}$	0.89 (2)	1.88 (2)	2.757 (3)	166 (5)

Data collection

Kuma KM-4-Plus CCD	$R_{\text {int }}=0.035$
\quad diffractometer	$\theta_{\max }=26.0^{\circ}$
ω scans	$h=-8 \rightarrow 14$
3217 measured reflections	$k=-17 \rightarrow 17$
1763 independent reflections	$l=-12 \rightarrow 10$

ω scans
${ }^{\max }=26.0$

1763 independent reflections
$l=-12 \rightarrow 10$
1746 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.045 P)^{2}\right.$
$R(F)=0.022$
$w R\left(F^{2}\right)=0.057$
$S=1.04$
1763 reflections
209 parameters
H atoms treated by a mixture of independent and constrained refinement
$\quad \begin{aligned} & \quad+0.35 P] \\ & \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\end{aligned}$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{\circ} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.43$ e \AA^{-3}
Absolute structure: Flack (1983),
374 Friedel reflections
Flack parameter $=0.010(12)$

H atoms attached to C or N atoms were positioned geometrically, with $U_{\text {iso }}$ values derived from $U_{\text {eq }}$ of the corresponding C or N atoms. The H atoms attached to atoms O11, O12 and O13 were refined freely, except for the $\mathrm{O}-\mathrm{H}$ distances, which were restrained to $0.9 \AA$, and a common free variable was used to describe simultaneously the $U_{\text {iso }}$ values of all six water H atoms.

Data collection: CrysAlis (Oxford Diffraction, 2002); cell refinement: CrysAlis; data reduction: CrysRed (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);
molecular graphics: ORTEPIII (Johnson \& Burnett, 1996); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

This project was supported by the Ministry of Education of the Slovak Republic (grant No. VEGA 1/7264/20) and by Comenius University (grant No. 50/2001/UK). Financial support of this work by the Ministry of Education of the Czech Republic (MS̆MT ČR; grant No. J07/98:143100008) and the Grant Agency of the Czech Republic (GAČR; grant No. 203/ $02 / 0436$) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1619). Services for accessing these data are described at the back of the journal.

References

Bernauer, K. (1976). Top. Curr. Chem. 65, 1-35.
Colomb, G. \& Bernauer, K. (1977). Helv. Chim. Acta, 60, 459-474.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Halloran, L. J., Caputo, R. E., Wilett, R. D. \& Legg, J. I. (1975). Inorg. Chem. 14, 1762-1768.

Hammershoi, A., Sargeson, A. M. \& Steffen, W. L. (1984). J. Am. Chem. Soc. 106, 2819-2837.
Herak, R., Prelesnik, B. \& Manojlovic-Muir, K. W. (1974). Acta Cryst. B30, 229-231.
Igi, K., Urdea, M. S. \& Legg, J. I. (1981). Inorg. Chem. 20, 3208-3213.
Johnson, C. K. \& Burnett, M. N. (1996). ORTEPIII. University of Glasgow, Scotland.
McLachlan, G. A., Brudenell, S. J., Fallen, G. D., Martin, R. L., Spiccia, L. \& Tiekink, E. R. T. (1995). J. Chem. Soc. Dalton Trans. pp. 439-447.
Maderova, J., Pavelcik, F. \& Marek, J. (2002). Acta Cryst. E58, o469o470.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Oonishi, I., Sato, S. \& Saito, Y. (1975). Acta Cryst. B31, 1318-1324.
Oonishi, I., Shibata, M., Marumo, F. \& Saito, Y. (1973). Acta Cryst. B29, $2448-$ 2455.

Oxford Diffraction (2002). CrysAlis and CrysRed. Oxford Diffraction Ltd, 20 Nuffield Way, Abingdon, Oxfordshire OX14 1RL, England.
Sekizaki, M. (1978). Bull. Chem. Soc. Jpn, 51, 1991-1995.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shibata, M. (1983). In Modern Synthesis of Cobalt(III) Complexes. Berlin: Academie-Verlag.
Templeton, D. H., Zalkin, A., Ruben, H. W. \& Templeton, L. K. (1979). Acta Cryst. B35, 1608-1613.
Thorup, N. (1975). Acta Cryst. A31, S142-142.
Thorup, N. (1977). Acta Chem. Scand. Ser. A, 31, 203-207.
Voss, K. E., Angelici, R. J. \& Jacobson, R. A. (1978). Inorg. Chem. 17, 19221925.

